

# Use of BIRDS Open-Source Standardized BUS in Munal, Danfe and Danfe-2

### **Antarikchya Pratisthan Nepal**

[Space Foundation Nepal] May 10 2023

info@antrikchya.org.np https://antarikchya.org.np



# MUNAL

# High School Satellite Consortium



# **BIRDS Open-Source**

Overview

- To demonstrate novel SPDM based COM/OBC designed in-٠ house
- To give continuity and improvement to two Missions of ٠ NepaliSat-1: Store & Forward (S&F) and Imaging Mission

| Specifications                                           |                       |  |  |  |  |
|----------------------------------------------------------|-----------------------|--|--|--|--|
| Dimension                                                | 1U (100X100X113.5) mm |  |  |  |  |
| Weight                                                   | 1.051 kg              |  |  |  |  |
| Harness                                                  | s Backplane Board     |  |  |  |  |
| Missions Camera, PACDS, SPDM, Art mission                |                       |  |  |  |  |
| OBC : On-Board Computer<br>EPS : Electrical Power Supply |                       |  |  |  |  |

SPDM : Satellite System on Chip Payload Demonstration Mission

PACDS : Passive Attitude Control and Determination System

Μυνιλ

- In house design, build, test and launch of Nepal's first High • School CubeSat









# **Orbital characteristics**



• Expected launch from PSLV on August 2023

| S.N. | Parameters       | LEO        | SSO*      |
|------|------------------|------------|-----------|
| 1.   | Inclination      | 51.64°     | 97.5 °    |
| 2.   | Altitude         | 400 km     | 550 km    |
| 3    | Orbital Velocity | 7.5 km/sec | 7.8km/sec |
| 4.   | Period           | 90 min.    | 95 min.   |

LEO: Low Earth Orbit

SSO: Sun-Synchronous Orbit

\* Data presented according to previous Missions characteristics



# **OBC/EPS** (Single Board)







# **OBC/EPS BOARD: EPS (Electrical Power System)**



| Power Generation                 |                                     |  |  |  |
|----------------------------------|-------------------------------------|--|--|--|
| Cell Type                        | SolAero Cells                       |  |  |  |
| Cell Efficiency                  | 29.5%                               |  |  |  |
| Electrical Performance           | Voc = 2.726 V, Isc = 522mA          |  |  |  |
| Area 30.4 <i>cm</i> <sup>2</sup> |                                     |  |  |  |
| Azur Space Solar cells on        | Azur Space Solar cells on –X Panel. |  |  |  |

| Power Storage              |                                    |  |  |  |  |
|----------------------------|------------------------------------|--|--|--|--|
| Battery Type               | Nickel Metal Hydride Batteries, AA |  |  |  |  |
| Capacity / nominal Voltage | 2450 mAh / 1.2 Volts               |  |  |  |  |
| Battery Configuration      | 3S2P                               |  |  |  |  |





BIRDS Open-Source

# Power Budget



| Subsystem/ Mission Modes | Power (mW) | Duration (H) | Energy (mWh) |
|--------------------------|------------|--------------|--------------|
| OBC/ EPS                 | 396        | 1.62         | 641.52       |
| COM (RX)                 | 170        | 1.13167      | 192.3839     |
| COM (TX_CW)              | 800        | 0.485        | 388          |
| COM (TX_Mission)         | 4200       | 0.1261       | 529.62       |
| PACDS                    | 132        | 1.13167      | 213.84       |
| SPDM (TX)                | 389.4      | 0.485        | 188.859      |
| SPDM (RX)                | 115.5      | 1.13167      | 130.07       |
| CAM MCU                  | 194.7      | 0.1832       | 35.67        |
| Camera(x2)               | 2370       | 0.1832       | 434.14       |
| Antenna Deployment       | 6720       | 0.00449077   | 30.178       |





Line width 8mm

CN303

CONN SOCKET

CONN SOCKET 4

CN304

Line width 8mm

JUMPER Line width 4mm

BAT\_TEMP



- Deployment switch 4 requires external source(Solar Panel) to get triggered initially. Satellite won't start through battery alone.
  - The satellite will not turn on if its deployed in eclipse and only turns

RBF2

RBF2 SRC

RBF2 SINK

U26

GND\_SYS

S1 D1-2

3 S2 D2-2 5

G2 D2-1 Si7232DN

G1 D1-1 6



# **Communication Board (In-house)**





5/11/2023





| Telemetry and mission data downlink |             | Command Uplink   |             | CW         | Beacon        |
|-------------------------------------|-------------|------------------|-------------|------------|---------------|
| Downlink Rate                       | 4800bps     | Uplink Rate      | 4800 bps    | Data Rate  | 20wpm         |
| Bandwidth                           | 26KHz       | Bandwidth        | 26KHz       | Bandwidth  | 50Hz          |
| Downlink Frequency                  | 401.375 MHz | Uplink Frequency | 402.375 MHz | Frequency  | 401.375 MHz   |
| Modulation                          | GFSK        | Modulation       | GFSK        | Modulation | ON/OFF Keying |

### Uplink data format

| Elements     | Header | Call sign | Control | PID | Info | Checksum | Footer |
|--------------|--------|-----------|---------|-----|------|----------|--------|
| Size (bytes) | 1      | 14        | 1       | 1   | 13   | 2        | 1      |

### Alternative:

Beacon transmits 1 packet data every two minutes.

### Downlink data format

Packet format (AX.25)

| Elements     | Header | Call sign | Control | PID | Info | Checksum | Footer |
|--------------|--------|-----------|---------|-----|------|----------|--------|
| Size (bytes) | 1      | 14        | 1       | 1   | 80   | 2        | 1      |



# Uplink/ Downlink Budget

| Ground Station                      | Command Uplink GFSK |                |            |         |         |         |
|-------------------------------------|---------------------|----------------|------------|---------|---------|---------|
| TX power [W]                        | 50 (17 [dBw])       | 50             | 50         | 50      | 50      | 50      |
| Line Loss [dB]                      | 3                   | 3              | 3          | 3       | 3       | 3       |
| Antenna Gain [dBi]                  | 22                  | 22             | 22         | 22      | 22      | 22      |
| GS EIRP [dBw]                       | 37                  | 37             | 37         | 37      | 37      | 37      |
|                                     |                     | UPLINK         | Path       |         | •       |         |
| Orbital Altitude [km]               | 550                 | 550            | 550        | 550     | 550     | 550     |
| Elevation Angle [degree]            | 10                  | 15             | 20         | 30      | 60      | 80      |
| Slant Range [km]                    | 1815.08             | 1518.02        | 1293.55    | 992.78  | 626.89  | 557.80  |
| GS Ant. pointing Loss [dB]          | 1                   | 1              | 1          | 1       | 1       | 1       |
| Polarization Loss [dB]              | 3                   | 3              | 3          | 3       | 3       |         |
| Path Loss [dB]                      | 149.64              | 148.09         | 146.70     | 144.40  | 140.41  | 139.39  |
| Atmohperic Loss                     | 1                   | 1              | 1          | 1       | 1       | 1       |
| lonospheric Loss                    | 0.4                 | 0.4            | 0.4        | 0.4     | 0.4     | 0.4     |
| Rain Loss                           | 0                   | 0              | 0          | 0       | 0       | (       |
| Isotropic Signal at Satellite [dbW] | -118.04             | -116.49        | -115.10    | -112.80 | -108.81 | -107.79 |
|                                     |                     | Satellite RX s | ensitivity |         |         |         |
| Antenna Pointing Loss               | 5                   | 5              | 5          | 5       | 5       | Ę       |
| Antenna Gain [dBi]                  | 0.9                 | 0.9            | 0.9        | 0.9     | 0.9     | 0.9     |
| Line Loss [dB]                      | 3                   | 3              | 3          | 3       | 3       | ~       |
| RX power at LNA input [dBw]         | -125.14             | -123.59        | -122.20    | -119.90 | -115.91 | -114.89 |
| RX power at LNA input [dBm]         | -95.14              | -93.58         | -92.199    | -89.9   | -85.9   | -84.89  |
| Receiver Sensitivity [dB]           | -100                | -100           | -100       | -100    | -100    | -100    |
| Link Margin [dB]                    | 4.86                | 6.42           | 7.801      | 10.1    | 14.1    | 15.11   |

| Satellite                           | Downlink Telemetry |
|-------------------------------------|--------------------|
| TX Power [W]                        | 0.8 (-1 dBw)       |
| Line Loss [dB]                      | 3                  |
| Antenna Gain [dBi]                  | 0.9                |
| Satellite EIRP [dBw]                | -3.1               |
| Downlink P                          | Path               |
| Orbital Altitude [km]               | 550                |
| Elevation Angle [degree]            | 10                 |
| Slant Range [km]                    | 1815.08            |
| Satellite Ant. pointing Loss [dB]   | 5                  |
| Polarization Loss [dB]              | 3                  |
| Path Loss [dB]                      | 149.64             |
| Atmohperic Loss                     | 1                  |
| Ionospheric Loss                    | 0.4                |
| Rain Loss                           | 0                  |
| Isotropic Signal at Satellite [dbW] | -162.14            |
| Ground Sta                          | tion               |
| GS Ant. Pointing Loss [dB]          | 1                  |
| GS Ant. Gain [dBi]                  | 22                 |
| GS Total Line loss [dB]             | 3                  |
| GS Effective Noise Temp. [K]        | 1000               |
| RX Power at GS LNA Input [dBw]      | -144.14            |
| GS Receiver Bandwidth [Hz]          | 12500              |
| GS Receiver Noise [dB]              | -127.63            |
| SNR at GS Receiver [dB]             | 14.5               |
| Required SNR at GS Receiver [dB]    | 10                 |
| System Link Margin [dB]             | 4.5                |







| Specifications   |                     |  |  |  |  |
|------------------|---------------------|--|--|--|--|
| Antenna Type     | UHF dipole Antenna  |  |  |  |  |
| Antenna Length   | 17.9 cm (one arm)   |  |  |  |  |
| Antenna material | SK-85(Carbon Steel) |  |  |  |  |





Antenna Panel

### Antenna Panel's design is similar to BIRDS' design



# **BPB: Back Plane Board**



- 60 pin connectors are used for all the mission boards and EPS/OBC.
- 50 pin connector for COM board (Reference: Addnics COM board ICD)



Boards placement on BPB

| Connector<br>Name | No. of<br>Pins | Description                     |
|-------------------|----------------|---------------------------------|
| J1-J4             | 60             | OBC/EPS, AB,<br>SPDM/PACDS, CAM |
| J5                | 50             | COM Board                       |
| SP1-SP4           | 12             | Solar Panels                    |
| SP5               | 12             | Antenna Panel                   |
| SW1-SW3           | 2              | Deployment switch               |





# **CAM:** Camera Mission

IR

RGB CAMERA



| ACE MISSION              |                            |  |
|--------------------------|----------------------------|--|
| Feature                  | Specification              |  |
| Cameras                  | OpenMV H7 Plus (RGB & NIR) |  |
| Ground Swath             | 168*95 km (550km orbit)    |  |
| Ground Sampling Distance | 131m                       |  |
| Resolution               | 1280x720                   |  |











**Image Classification** 

**Image Segmentation** 





**RGB** Image

IR-Image

### 5/11/2023

### **BIRDS Open-Source**



# PACDS: Passive Attitude Control and Determination





Hysteresis Rod

8

HyMu80

## SPDM:



# Satellite System-on-Chip Payload Demonstration Mission



- Demonstrate the use of integrated Communication(COM) and On-Board Computer(OBC) subsystem based on novel SSoC for future cubesat missions using LoRa(Long Range) Modulation.
- ARM based Dual Core Processor with Radio
- +22 dBm Transmitting power
- -148 dBm Receiving sensitivity







# Art and Culture Mission





Satellite

# Long Range Test



NAST Ground Station



### Chobhar Hill

Distance: 3.565km Path Loss : 92.97 dB Operating Freq: 435-437MHz [To use BIRDS GS Freq Changed from 401/402 MHz] TX power: 22dBm RX sensitivity: -100dBm

### 5/11/2023

### **BIRDS Open-Source**



# Space Qualification Test : TVT



### Satellite Setup for TVT







Functional Test Before TVT



Thermovac Controller

# Thermal Vacuum Test: Result





### Thermal Cycle Profile during TVT -TC01 -TC02 -TC03 -TC04 -TC05 -TC06 -TC07 -TC08 -60 0 1 2 2 5 5 7 8 8 -10 34 17 18 1.9 201 25 22 28 24 25 26 27 28 29 30 31 32 124 3.2 115 Time(hr)

# RoadMap







# **Danfe Space Mission**

# Multi Payload CubeSat Platform (MPCP)





# **Danfe Boards**





EM Boards

### FM Boards



# Overview





Source: Aalto-1, multi-payload CubeSat: Design, integration and launch



# **Danfe Space Mission**





Danfe mission Block Diagram





### PX4 on STM32F427



Satellite system on chip



Recovery (0.6h)

FT (0.6h)

Time (hours)

# Space Qualification Test



Thermal Vacuum Test at Centum Electronics, Bangalore, India

**Electromagnetic Compatibility Test at Khwopa Engineering** College, Bhaktapur, Nepal

**BIRDS** Open-Source



# **Danfe-2 Mission**

# Payload Hosting Initiative





MOHAMMED BIN RASHID SPACE CENTRE

# Danfe-2



- UNOOSA's Access to Space for all: Payload Hosting Initiative project.
- MBRSC'S 12U satellite: (PHISat)
- Munal's OBC/EPS and Danfe Space Mission in a single board. (Modular Design)
- Integrated OBC, EPS and Communication system (Bus system in a single board)
- PDR completed on May 9





# Danfe-2 Power Budget



- Sun-synchronous Orbit
- Total Duty cycle provided is 30%

| Power Budget |          |            |  |
|--------------|----------|------------|--|
|              | Power(W) | Duty Cycle |  |
| Main System  | 1.005    | 12%        |  |
| HK logging   | 1.15     | 6%         |  |
| LoRA         | 1.635    | 9%         |  |



# Thank You