

BIRDS BUS OPEN SOURCE WEBNIAR 14

Lessons Learnt and Findings from BIRDS5-FTA

08/03/2023

- □ Status of BIRDS5 satellites
- Satellites operation report
- Possible causes of failure
- FTA tests conducted and the obtained results
 - > Analysis of the results
- Conclusion of FTA
- Lessons learnt and recommendation for design improvement

BIRDS 5 Status

□ BIRDS 5 satellites were deployed on the 2nd of December 2022

https://www.youtube.com/watch?v=oWabTGG4plc

BIRDS 5 In Orbit Status

Name	ID	Satellite	Altitude (km)
1998-067UL	54534	Taka	368
1998-067UM	54535	54535 PearlAfricaSat-1 35	
1998-067UN	54536	ZIMSAT1	373
ISS (ZARYA)	25544	ISS	415

□No signal received from all the three satellites

1998-067UN AOS - 179.1° 20:51:59 - Wed	Altitude: 373 km Elevation: 9.8°	ld:54536 72.5° - LOS Wed - 21:00:05
1998-067UP		ld:54537
AOS - 201.8°	Altitude: 368 km	58.9° - LOS
21:23:53 - Wed	Elevation: 24.6°	Wed - 21:33:26
1998-067UL		ld:54534
AOS - 206.1°	Altitude: 368 km	56.7° - LOS
21:31:05 - Wed	Elevation: 30.0°	Wed - 21:40:47
1998-067UM		ld:54535
1990 0070141		
AOS - 208.9°	Altitude: 358 km	55.2° - LOS

Satellite Operation Report

- Satellites tracking
 - Kyutech GS (main)
 - BIRDS GS network
 - > SATNOGS
 - Wakayama GS (12 m, 30 dBi Antenna Gain)

Satellite	CW Beacon	UHF Uplink	UHF Downlink	Remark
PearlAfricaSat-1	Х	Х	X	□ No CW
TAKA	Х	Х	Х	No uplink success
ZIMSAT-1	X	Х	X	No downlink
				success

- ➢ Force CW
- Erase flash memories

Possible Causes of Failure

Others:

Design issues? Individual hardware issues? Software issues? Workmanship issues? Fault parts?

A. BIRDS5 Operation Software

Kyutech

- EM satellite is functional
- KITSUNE with the same frequency can be detected.
- BIRDS-5S working properly

- B. Wakayama University and BIRDS Network Ground Stations Hardware
 - Kitsune CW can be heard
 - No signal from BIRDS satellites

2. Satellites were not Activated

A. RBF pins were not removed

Denied: RBF pins removed by JAXA

- **B.** Jumper pins (J15) on the FAB dropped during vibration
 - **Denied**:
 - □ Glued during assembly
 - After vibration the satellites
 - functioned

RBF pins returned to Kyutech

No RBF pins seen in JAXA's video

Small Satellites Deployment J-SSOD#23 from "Kibo" (BIRDS-5, and SpaceTuna1)「きぼう」から超小型衛星の放出 - YouTube

2. Satellites were not Activated Continue..

- **C.** Deployment switches failed due to:
 - I. Design changes

Kyutech

Position changed from Birds4

	BIRDS-4	BIRDS-5	Futaba
Depression length of the switch when the satellite is stored in the J-SSOD	1.5mm	1.3mm	1.2mm
Period of being stored from handover to release	5.5 months (2020/10/01 - 2021/3/14)	6 months(10%↑) 2022/6/7 - 2022/12/2	5.5 months 2022/02/24- 2022/08/12

Unlikely

=>Futaba design was in more severe condition

II. Electrical Chattering

- Likely occur during launch and deployment
- Dangers

Kyutech

- Can affect Reset-PIC
- Can affect powerlines

Effects tested under atmosphere and vacuum (TVT) conditions

Kyutech Illustration of Electrical Chattering: Manual

Structural Design of BIRDS5 Satellite Ŀ

> 3 Deployment switches

nstitute of Technology

Dep1	Dep2	Dep3
ON	ON	Chattering
ON	Chattering	ON
Chattering	ON	ON

Chattering Test: Atmospheric Conditions

- □ Simulate rapid turning on/off of satellite:
 - 1. Program BIRDS-5S Satellite with TAKA FM Code
 - 2. Fully Erase Satellite
 - 3. Rapidly turn on/off satellite using deployment switch toggling
 - 4. Observe data collection and verify normal
 - 5. Repeat 3–4

Parameters	Test 1	Test 2	Test 3
FAB data	Normal	Normal	Normal
RESET data	Normal	Normal	Normal
Flags and addresses	Normal	Normal	Normal
CW	Normal	Normal	Normal

Chattering Test: During TVT

Kyutech

Kyushu Institute of Technology

TVT: Temperature Profiles (TVT1 &2)

3 cycles and 2hr hot soak

TVT(2) HK Collected Data

		sec	min	hour	day	
1	333303000	3	0	0	0	1st turn on
2	333303000	3	0	0	0	2nd turn on
3	333303000	3	0	0	0	3rd turn on
4	333320010	32	1	0	0	
5	333302030	2	3	0	0	
6	333320040	32	4	0	0	
7	333302060	2	6	0	0	
8	333320070	32	7	0	0	
9	333302090	2	9	0	0	
10	3333200a0	32	10	0	0	
11	3333020c0	2	12	0	0	
12	33331F0d0	31	13	0	0	
13	3333010F00	1	15	0	0	
14	33331F1000	31	16	0	0	
15	3333011200	1	18	0	0	
16	33331F1300	31	19	0	0	
17	3333011500	1	21	0	0	
18	33331F1600	31	22	0	0	
19	3333011800	1	24	0	0	
20	33331F1900	31	25	0	0	
21	3333011Ь0	1	27	0	0	Longest ON
22	333302000	2	0	0	0	4th turn on
23	333302000	2	0	0	0	5th turn on
24	333302000	2	0	0	0	6th turn on
25	333320010	32	1	0	0	

ngest ON time: 27 mins

Chattering

turn on turn on turn on

□ TVT1 Results : Chattering not successful, No CW, No FM, Sat OFF

TVT2 Results: Chattering was successful, No CW, No FM, **Battery damaged, Sat ON**

TVT: Temperature Profile (TVT3)

□ 2 cycles and 1hr hot soak

TVT(3) HK Data Collected

CW received, FM command also confirmed, chattering was successful

Parameters	TVT1	TVT2	Test 3
FAB data	Not Confirmed	Normal	Normal
RESET data	Not Confirmed	Normal	Normal
Flags and addresses	Not Confirmed	Normal	Normal
CW	Not Confirmed	Not Confirmed	Normal

Unlikely that failure was due to electrical chattering

- **III. Mechanical Chattering**
- Due to vibration

Kyutech

- Dangers
 - Physical damage of deployment switches
- Test condition1 with 46.6N:
 - $\checkmark\,$ Random and sine burst vibration
 - ✓ Total force to the four rails: 19Kg(186.6N)
 - ✓ Functionality was okay hence unlikely
- Test condition2 with 0.2mm room:
 - Random and sine burst vibration
 - ✓ Functionality was okay hence unlikely

Kyutech Video of Mechanical Chattering (0.2mm Room)

Kyushu Institute of Technology2. Satellites were not Activated Continue...

D. Satellites damaged by rocket vibration

NG-18 (BIRDS-5)

NG-17 (KITSUNE) \rightarrow Looks good

- Direction was wrong after booster separation
- Lt has a spike at the time of separation

Cygnus Cargo ship failed to deploy one of the solar array

Kyutech NG-17 and NG-18 Launch Comparison

Only one solar panel deployed

In a statement late Nov. 9, Northrop Grumman blamed the failed deployment of the array on debris from the launch. "During a rocket stage separation event, debris from an Antares acoustic blanket became lodged in one of the Cygnus solar array mechanisms, preventing it from opening," said Cyrus Dhalla, vice president and general manager of tactical space systems at Northrop Grumman. The company did not explain how the debris got into the mechanism, something the company has not reported happening on previous Cygnus launches.

2. Satellites were not Activated Continue... Damaged with Rocket Vibration

The satellite pod was covered by cushion.

Vibration level in the rocket is much smaller than the vibration test we conduct

□ Satellites were damaged by launch vibration?

2. Satellites were not Activated Continue...

E. Battery Failure

Kyutech

	2022/5/2	2022/5/20
ZIMSAT-1	4.21V	3.99V
TAKA	4.21V	4.02V
PearlAfricaSat-1	4.2V	3.99V

- □ In 18 days battery voltage decreased by 0.2V
- Estimated capacity decrease of 3.5% is expected
 - Estimated from battery thermal test.

Assuming 3.5% in 18 days => 35% decrease in
 6 months

- Worst Case 50% capacity decrease => 3.6V
 - \succ Can the satellite turn ON at 3.6V?

Battery Thermal Test: 1 Cell Discharge Rate

- At 50% battery capacity, satellite was tested for
 - Activation and
 - Antenna deployment
- Condition
 - Vacuum: TVT
 - Atmosphere temperature: Clean rook

Results

- > No CW
- Antenna did not deploy
- Battery was damaged by TVT

Solution

- Charge satellite battery with sun simulator
- After 38 mins, antenna deployed and CW heard

Kyutech Kyushu Institute of Technology

Battery Recovery test

□ Failure due to battery is therefore **denied**

3. Satellites were activated but failed to start the Transmitter

A. Malfunctioning

- Transceiver malfunctioning experienced at FM
- Reason: Transceiver design change
- Solution: R13 and R14 removed

Unlikely

- Long duration test were good
- Transceiver purchased on different batches
- Cannot occur on all the three satellites

Summary Transceiver Malfunctioning

Transceiver Mounted on	Problem	Solution	Status of the Flight Model
PealAfricaSat-1	High Power Draw	Removed R13 and 14	Normal power draw
	No Reset Data		Reset data obtained
			Downlink and uplink were OK
ZIMSAT-1	High Power Draw	Removed R13 and 14	Normal power draw
	No Reset Data		Reset data obtained
			Downlink and uplink were OK
ΤΑΚΑ	No problem	□ N/A	Normal power draw
			Reset data obtained
			Downlink and uplink were OK
BIRDS-5S	High Power Draw	Removed R13 and 14	Normal power draw
	No Reset Data	Send for repair with Kojima San	Reset data obtained
	No CW beacons		Downlink and uplink were OK

3. Satellites were activated but failed to start the Transmitter

B. Low battery power

Denied : CW can be emitted when the satellite recovers

C. Main-PIC and COMPIC errors unlikely

D. Reset PIC fails turn on COMPIC and/or Tx after 30 mins

Unlikely -no malfunctioning was found after chattering test and low battery test

3. Satellites were activated but failed to start the Transmitter

E. Main PIC fails to turn on due to low OCP threshold setting (150mA)

Unlikely- not seen on the ground test

F. Reset PIC malfunctioning

□ Observed in BIRDS-5 due to transceiver

- Satellites could not receive reset data
- Satellite could not reset
- The problem was solved and never encountered again nor reproduced

Unlikely but open

Reset PIC Anomaly Trend

- □ Comparison of BIRDS3, 4, and KITSUNE
 - BIRDS-3 Reset PICs worked for the entire period of their operations
 - BIRDS-4 Reset PIC malfunctioned after the first CW and lost the timecounting capability and the UART communication with Main PIC.
 - KITSUNE reset PIC worked for almost 1 year in orbit
 - $\checkmark\,$ During SPATIUM-2 development on the ground, It was observed that

Reset PIC had a malfunction of time counter .

Different Components LOTS

Difference Lots of BIRDS4, KITSUNE and BIRDS5 components

- DC/DC convertor
- PICS (RESET, COMPIC, FABPIC)
- OCP
- MOSFET switch (UNREG1, UNREG2)
- Crystal
- Clock Oscillator

Parts Number	Usage	BIRDS3	BIRDS4	KITSUNE	BIRDS5	MO-1	ChibaTech
		2010 5	5 from				
		2018.5	2018.5				
			4 from				
			2019.9				
	Reset-PIC,			2020.4_25int			
PIC16F1789-I/MV	COM-PIC,			ake			
	FAB-PIC				3 from		
				2020.4_9int			
					ake		
					15 from	2021 0	2021.8 or
					2021.8	2021.0	2022.4

Unlikely but open because failure could not be reproduced

- => Chattering of deployment switch was expected to generate some noise
- => No effects observed on the reset PIC

4. Transmitter not Emitting CW

Long Duration Test Report

A. Programming errors B. COMPIC errors

Unlikely

- Long duration test results were okay
- Errors never detected during operations

Transceiver Mounted	Uplink	k Downlink		
on	GMSK	GMSK	CW	Downlink Successful on the
			Morse	Following Missions
	OK	OK	OK	Multispectral Camera
PEARLAFRICASAI-1				Store and Forward Mission
				APRS (Automatic Packet
				Reporting System) Mission
				Image Classification
□ ZIMSAT-1				ADCS (Attitude Determination
				and Control System) and
				Attitude Visualization: High
				Sampling and Housekeeping
				Data

4. Transmitter not Emitting CW

C. Transceiver Sensitivity

□ No enough link margin?

Denied

- Sensitivity was reverified using RF shield box
 - Sensitivity was -99dBm (BIRDS5-S)
 - Similar to anechoic and short range test results
- □ Link Budget (Uplink) was calculated
 - There is enough link margin

	Link Margin					
Satellite	10 ⁰ Elevation	20 ⁰ Elevation	50 ⁰ Elevation	70 ⁰ Elevation	80 ⁰ Elevation	90 ⁰ Elevation
BIRDS-5FM	5.3 dB	8.6 dB	14. 3 dB	15.9 dB	16.3 dB	16.43 dB
BIRDS-5S FM	4.3 dB	7.6 dB	13.3 dB	14.9 dB	15.3 dB	15.4 dB

A. Antenna Deployment: Dispatch Chamber

Kyutech

ushu Institute of Technology

□ Successful @ -30 degrees

In orbit Antenna deployment was set to occur
 @17:20 JST satellites were not in eclipse

□ Low temperature deployment failure denied

deployed

37

B. Antenna Deployment: PETT Chamber

TVT 1: unsuccessful

- Wrong FM code
- Connectivity problem

TVT2: unsuccessful

Battery Damaged

TVT3: Partial deployment

EM battery used

C. Antenna Deployment: Clean Room

- Done between TVT2 and TVT3
- Partial and full success

Pett Chamber Test

Kyutech
Kyushu Institute of Technology5. Antenna Deployment Failure: Video

TVT3 partial deployment (blocked by PETT Chamber)

> A thermal ball was formed

Antenna Deployment: Cleanroom

FM code, CW verified, normal operation

Clear memory.

- □ SAT voltage measured at 3.61V
- SAT chattering testing then turn on
- No deployment, no CW after 35 mins
- \square Place into sun simulator at 36 mins
- Antenna deployed and CW at 1hr 07min, however thread cut but antenna remained furled

Deployment was blocked by satellite stand

Antenna Deployment: Taken with High Speed Camera

Trial #	Orientation	Deployment Result	Remark
Trial 1	Vertical	success	
Trial 2	Vertical	success	
Trial 3	Horizontal	Success	
Trial 4	Horizontal	success	
Trial 5	Horizontal	Failed	Antenna was tightly tied

Kyutech

yushu Institute of Technology

Fishing wire (Ball) Comparison

□Vacuum vs atmosphere temperature conditions

The fishing wire ball from TVT is slightly bigger by a very small margin hence denied

- D. TVT4 (Square chamber): Full deployment
 - Vacuum Only
 - □ Failure was therefore denied

Successful

- E. Antenna deployment counter was set to a wrong value
 - Deployed occurred as planned
 - Deployment could not occur at voltages below 3V
 - Even if no deployment, deployment counter increment
 - Satellite did not wait for 24hrs to retry deployment and increment counter
 - Unlikely: Satellites were reset and memories flashed
- F. Reset PIC failed to activate the satellite
 - Never observed on the ground therefore unlikely

G. Antenna deployment failed due to too much Kapton Tape. Denied- Antenna deployed

- E. Antenna deployment was physically broken
 - Unlikely- judged from delivery to JAXA

49

H. Fishing wire was stuck

- On points 1 and 2 it can get stuck under the antenna where the fishing wire crosses the antenna elements
- On points 3 and 4 the fishing wire can get pressed under the antenna guides when the antenna is stowed too tightly.
- This was known and was avoided at EM and FM
- Denied: Antenna deployed with proper tying method

Note: This was noticed when deployment was blocked by PETT chamber and satellite stand.

Kyutech	Summary of Antenna Deployment Tests				: Tests
Test Conducted	Conditions	Chattering Confirmed	Sat Activated	Antenna Deployment	Note
FM Stage	Low temperature (-30 deg) and atmosphere temperature	No	Yes	Yes	100 % success using dispatch chamber and in atmosphere temperature
Test in Clean room1	Atmosphere temperature	Yes	Yes	Yes	98+ % successful
TVT1	 3cycles 2hr vacuum + high temperature 	No	No	No	 Problem with connection cables Wrong code
TVT2	 3cycles 2hr vacuum + high temperature 	Yes	Yes	No	 Battery damaged Low battery power
Test in Clean room1	Atmosphere temperature	Yes	Yes	Partial	Sun Simulator used Antenna blocked by satellite stand
TVT3	 2 cycles 1hr vacuum + high temperature 	Yes	Yes	Partial	PeTT chamber size blocked deployment
TVT4	Vacuum only	No	Yes	Yes	100% successful
Test in Clean room1 (High speed camera)	Atmosphere temperature	No	Yes	Yes	98% Successful

Impact of Antenna Deployment Failure

Use shield boxCompare the gains of :

Measuring Antenna Gain

Kyutech

Link Budget Summary (CW)

CW downlink link budget

- Considerations
 - Kyutech GS

- ➢Partial deployment
- ➤Satellite antenna gain, -23dBi
- ≻Kyutech GS Antenna Gain, 22dB
- ≻High Elevations +70⁰

Wakayama University GS

- ➢Partial deployment
- ≻Satellite antenna gain, -23dBi
- ≻GS Antenna Gain, 30dB

≻High Elevations +40^o

	LINK MARGIN				
Satellite	70 ⁰ Elevation	80 ⁰ Elevation	90 ⁰ Elevation		
BIRDS-5S FM	-3.99 dB	-3.62 dB	-3.49 dB		

	LINK MARGIN			
Satellite	40° Elevation	80 ⁰ Elevation	90 ⁰ Elevation	
BIRDS-5S FM	1.02 dB	4.38 dB	4.51 dB	

Antenna in folded state,

- Communication with the satellites
 - ✓ Impossible with both BIRDS GS network and Wakayama University GS

Antenna in partial deployment

- Communication with the satellites
 - ✓ unlikely with BIRDS GS network
 - Likely with Wakayama GS
- Depends on the degree of partial deployment

Fully deployed antenna

Communication with the satellites

✓ Possible with all BIRDS GS network

6. Tracking Satellite with Wrong TLE

A. TLE provided by JAXA (Almost same as ISS

No signal received

B. SATNOGS TLES

Kyutech

No signal received

C. TLE provided by NORAD

No signal received

TLE differences

- Initially NORAD vs ISS vs JAXA TLEs
 - Very small difference

Hence unlikely

Satellite position in orbit after deployment.

7. Others

A. Design Changes :

□ The difference among BIRDS-3/BIRDS-4/KITSUNE/BIRDS-5

Changes in the EPS1 board of KITSUNE and FAB of BIRDS-5 from FAB of BIRDS-3

Unlikely but open- the changes were for improvements

B. Open Cases

Kill Main flag observed in 1st TVTThe flag went high

Antenna counter increment before 24hours reset

FTA Conclusion

Three months Intensive investigations were conducted

- BIRDS5-S satellite was used for testing
 - Similar design to BIRDS 5 satellites in orbit

Two major issues observed during TVT were

- Battery failure
 - ✓ Unlikely because BIRDS5-S demonstrate satellite could operate under sunlight
- Antenna deployment failure was observed due to
 - ✓ Tight tying of the antenna and it was already a known case that was taken care of
 - Creation of a thermal ball on fishing string, but no noticeable difference on the balls were observed in vacuum and room temperature
 - ✓ PETT chamber was small for full antenna deployment
 - ✓ However
 - Square chamber demonstrated that the antenna can deploy

FTA Conclusion

Flight software failure denied because LDT results were OK

- Human errors (Workmanship) denied as observed from the records
- Reset PIC is suspected as it occurred also in BIRDS4, however, BIRDS 5S could not reproduce the failure
 - Suspicion remains about difference of production lots
 - Still inconclusive because we cannot reproduce the failure in orbit

OVERALL CONCLUSION

No clear cause was identified to explain the failure of all the three satellites

Lessons Learnt/ Areas for Design Improvements

1. Software change

- Add capability to COM Code to change CW duty cycle
- Change RESET PIC Code so watchdog timer clear is in the main code loop
- Add code to MAIN PIC for various mission executions (IMG-CLS, MULT-SPEC, PINO)
- Add code to MAIN PIC to automatically turn off missions after 15 minutes
- Changed command structure for all MAIN PIC and MISSION commands
- Add code for MISSION BOSS
- Change FAB code to increase resolution of ADCs

Lessons Learnt/ Areas for Design Improvements

2. OBC/EPS board

- Reset PIC design change options:
 - Change PIC16F to PIC18F
 - \blacktriangleright Have two PICS from PIC16F to 2 x PICs (16F + 18F) or 2x PICs(16F)
 - Change PIC16F1789 to FUTABA PIC 16F877A (low power)

> Have two PICS and assign the PICs, one for monitoring and the other for power control

New Block Diagram of OBC/EPS: New Design Change

61

Lessons Learnt/ Areas for Design Improvements

3. EPS change

- Consider using Li-Ion batteries, so far have good flight heritage
- Add small solar cells on antenna panel if space is available to aid satellite power
- 4. Structural design change
 - Solder Jumper pin (J15) on FAB
 - Use rail switch
- 5. Antenna Deployment Mechanism
 - To increase the height of the antenna guides so that the fishing string will have more margin of passing under the antenna elements
 - Do antenna deployment under vacuum conditions using thermal vacuum chamber

