

1

Open-sourcing 1U CubeSat platform for Education and Capacity Building

Mengu Cho, George Maeda, Sangkyun Kim, Takashi Yamauchi, Hirokazu Masui, Kentaro Kitamura, Juan José Rojas Hernández*

Laboratory of Lean Satellite Enterprises and In-Orbit Experiments

Kyushu Institute of Technology, Kitakyushu, Japan

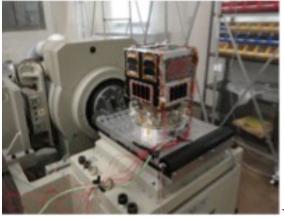
*Costa Rica Institute of Technology, Costa Rica

April 26, 2022

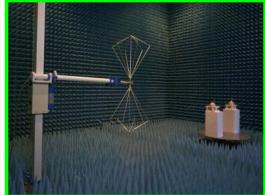
CubeSat Developers Workshop 2022

Kyushu Institute of Technology (Kyutech)

- A national university founded in 1909
 - 4,400 Undergraduate students
 - 1,700 Graduate students
 - 370 Faculty members
 - Engineering, Computer science, Lifescience
- Located in the Kitakyushu region
 - Population of more than 1 million



- Space Engineering International Course (SEIC) since 2013
 - English-based post-graduate program
- Department of Space Systems Engineering since, 2018
 - Undergraduate program given in Japanese


Center for Nanosatellite Testing

To be capable of doing all the tests for a satellite up to 50cm, 50kg

Vibration

EMC & Antenna pattern

Pressure & Leak

Thermal vacuum

Assembly & Integration

Thermal vacuum

Conducted more than 400 tests for external users since 2010

 $\alpha\&\epsilon$ measurement

Space Development and Utilization Award (JAXA president award), 2022

Outgas (ASTM E595)

Kyutech Satellite Heritage

22 satellites launched since 2012

Satellite name Satellite development period Launch/ISS release date

BIRDS Program

Satellite program for non-space faring countries

Mission Statement

By successfully building and operating the first national satellite, make the foremost step toward indigenous space program at each nation.

BIRDS program missions

- Lower the entry barrier to space sector
 - 1. Support capacity building efforts of non-space faring countries
 - 2. Make satellite building easier
- Practice a new engineering education
 - 3. Human resource development through international joint satellite projects
 - 4. Learn systems engineering and project management through satellite development and operation

BIRDS program

- BIRDS program is made of the following projects
- Satellite projects
 - BIRDS-1
 - BIRDS-2
 - BIRDS-3
 - BIRDS-4
 - BIRDS-5
- BIRDS network project
- Open-Source project
- Standardization project

BIRDS satellite projects features

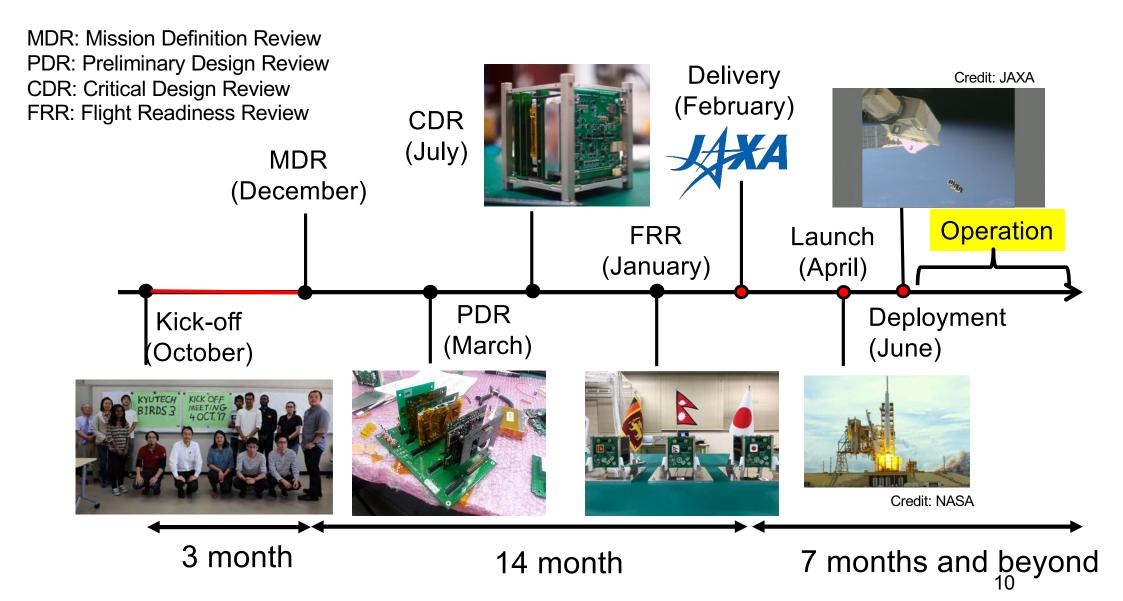
- 1U CubeSat constellation of
 - BIRDS-I: 5 satellites by Bangladesh*, Ghana*, Japan, Mongolia*, and Nigeria
 - BIRDS-II: 3 satellites by Bhutan*, Malaysia and Philippine
 - BIRDS-III: 3 satellites by Japan, Sri Lanka* and Nepal*
 - BIRDS-IV: 3 satellites by Japan, Paraguay* and Philippine
 - BRIDS-V: 3 satellites by Japan, Zimbabwe* and Uganda*
- Made by students at Kyutech

* First satellite for the country

- <u>2 years from concept design to disposal</u>
- Released from ISS
- Network operation by multiple ground stations

Group photos of BIRDS-I, -II, -III, -IV and -V teams

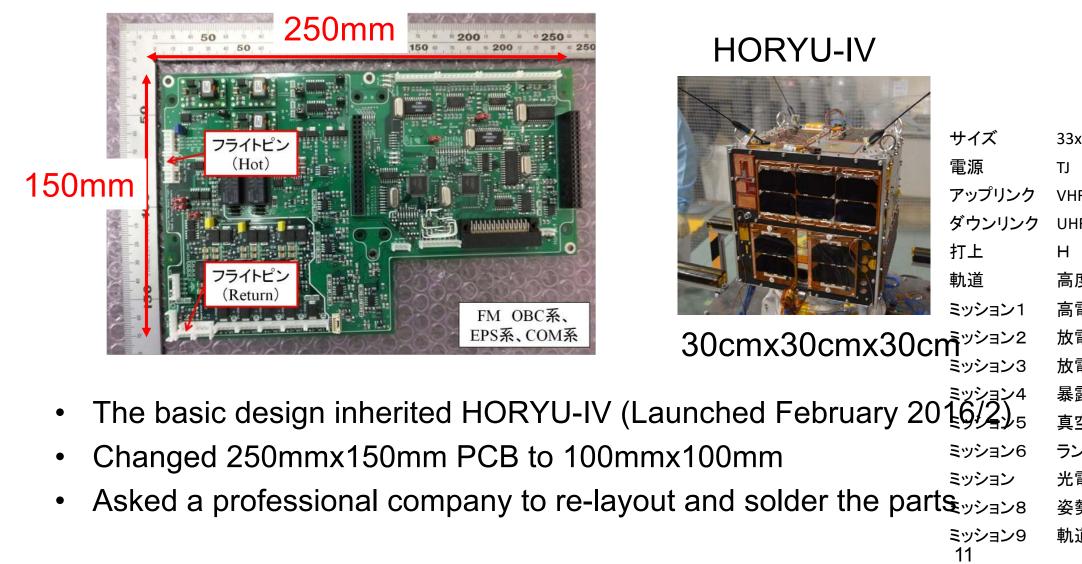
Fit into 2 years


- A short-term goal
 - Build and operate satellites
 - Give the students **confidence** that they can do it
- Long-term goal
 - Students initiate their own space program in home countries
 - The full mission success

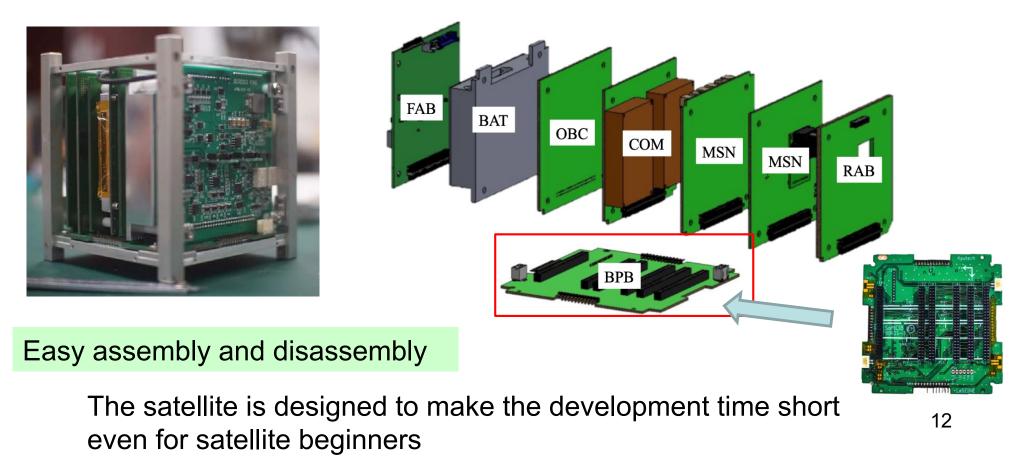
• <u>The former students successfully build and operate the</u> <u>second satellite in their home countries</u>

- Let students learn <u>the entire process</u> of a satellite project from beginning to end
 - Witness decision-making processes and then make decisions by themselves
- Fit the project within the degree timeline. 2 years maximum.
 - Select 1U CubeSat and ISS deployment as the platform for this training

Fit into 2 years



Satellite design


The initial design (BIRDS-1) inherited already available ad flight proven in-house satellite bus

Satellite design



- Each satellite has the same design (per generation)
- Harnessless design
- Each satellite uses the same frequency (UHF/VHF amateur radio)

Evolution of BIRDS satellites

Deployable antenna UHF uplink

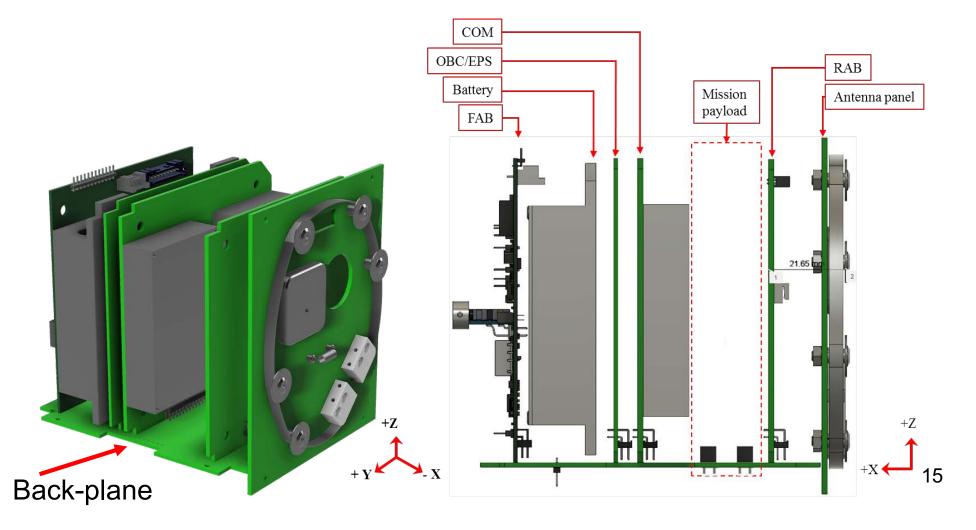
Dipole antenna New OBC/EPS

3xDeployment switch

No rail switch

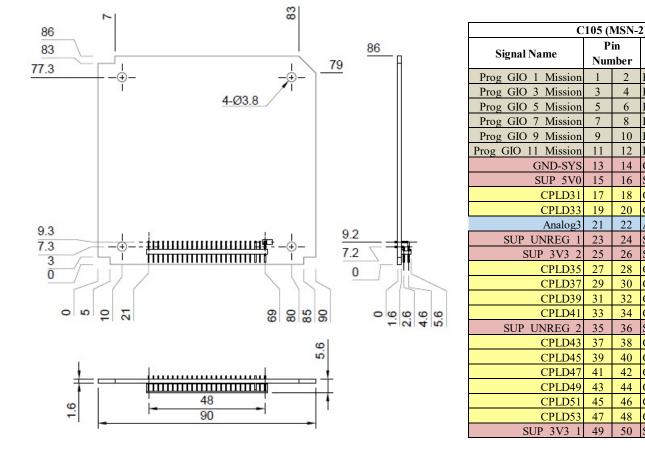
- BIRDS bus evolved by reflecting the lessons learned in the previous generations
- Minor design change since BIRDS-3
 - Mostly to adapt the changes of ISS safety requirements

Flight Heritage


- BIRDS-1
 - CW beacon until reentry
 - Failed in uplink due to low gain of patch antenna
- BIRDS-2
 - Basic functions until reentry
 - Difficulty in UHF uplink due to internal noise from EPS
 - Modified version (BIRDS-2S) worked well in orbit
- BIRDS-3
 - Achieved all the missions
 - Fully operational for two years until reentry
- BIRDS-4
 - Power budget issues for two satellites
 - One satellite remained and achieved most of the missions
- BIRDS-5
 - To be deployed into orbit in summer 2022

BIRDS BUS

- Two slots for mission payload PCB (86mmx90mm)
- Connected to back-plane board with 50-pin connectors
- UHF(up/down), Power, C&DH, Antenna, Structure, Umbilical and Solar Panels are fixed

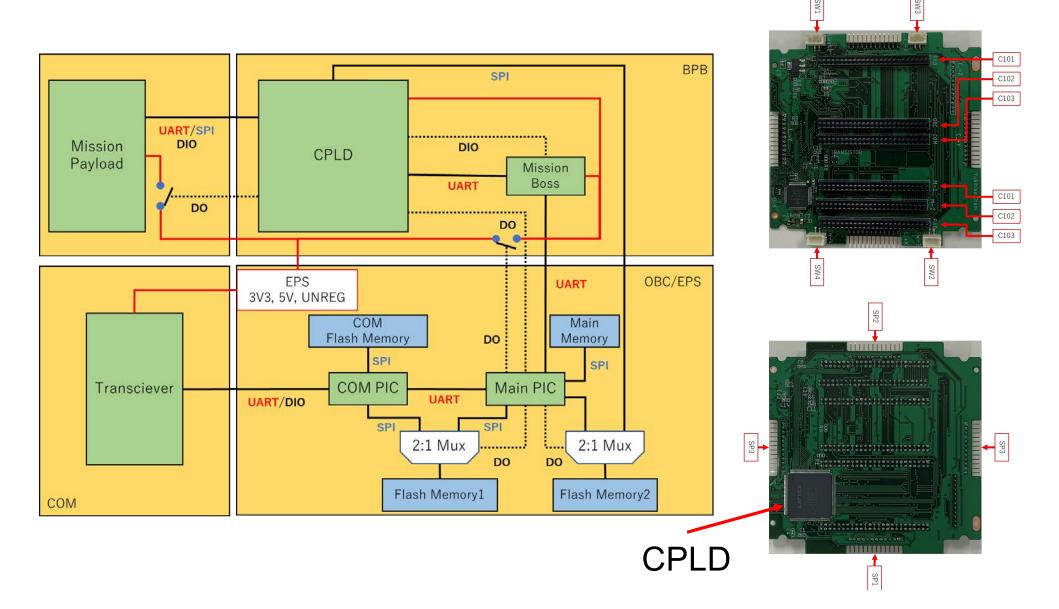


BIRDS BUS

- Two slots for mission payload PCB (86mmx90mm) ullet
- Connected to back-plane board with 50-pin connectors
- UHF(up/down), Power, C&DH, Antenna, Structure, Umbilical and • Solar Panels are fixed

Pin

2)		C106 (RAB)				
Signal Name	Signal Name	-	in nber	Signal Name		
Prog GIO 2 Mission	Prog GIO 1 Mission	1	2	Prog GIO 2 Mission		
Prog GIO 4 Mission	Prog GIO 3 Mission	3	4	Prog GIO 4 Mission		
Prog GIO 6 Mission	Prog GIO 5 Mission	5	6	Prog GIO 6 Mission		
Prog GIO 8 Mission	Prog GIO 7 Mission	7	8	Prog GIO 8 Mission		
Prog GIO 10 Mission	Prog GIO 9 Mission	9	10	Prog GIO 10 Mission		
Prog GIO 12 Mission	Prog GIO 11 Mission	11	12	Prog GIO 12 Mission		
GND-SYS	GND-SYS	13	14	GND-SYS		
SUP 5V0	SUP 5V0	15	16	SUP 5V0		
CPLD32	CPLD55	17	18	CPLD56		
CPLD34	CPLD57	19	20	CPLD58		
Analog4	Analog5	21	22	Analog6		
SUP UNREG 1	SUP UNREG 1	23	24	SUP UNREG 1		
SUP 3V3 2	SUP 3V3 2	25	26	SUP 3V3 2		
CPLD36	CPLD59	27	28	CPLD60		
CPLD38	CPLD61	29	30	CPLD62		
CPLD40	CPLD63	31	32	CPLD64		
CPLD42	CPLD65	33	34	CPLD66		
SUP UNREG 2	SUP UNREG 2	35	36	SUP UNREG 2		
CPLD44	CPLD67	37	38	CPLD68		
CPLD46	CPLD69	39	40	CPLD70		
CPLD48	CPLD71	41	42	CPLD72		
CPLD50	CPLD73	43	44	CPLD74		
CPLD52	CPLD75	45	46	CPLD76		
CPLD54	CPLD77	47	48	CPLD78		
SUP 3V3 1	SUP 3V3 1	49	50	SUP 3V3 1		


Mission board dimension

50-pin connector assignment¹⁶

BIRDS BUS

Communication between mission payload and satellite bus is done through CPLD (Complex Programmable Logic Device) configurable by software

Why open sourcing?

- BIRDS-5 will be the last of BIRDS satellite projects
- We will move to the next stage
 - Promote second satellites built by former BIRDS students
 - True mission success of BIRDS program
- The easiest solution for the second satellites is to duplicate or modify BIRDS satellites
- Kyutech cannot maintain the satellite bus
 - Kyutech is not a company
 - If a company commercialize the BIRDS bus (it is still OK, if you want), it will be expensive
- The most affordable way is to let users work on the satellite by themselves
- Why don't we make others (non-BIRDS members) benefit from this initiative as well?
- The conclusion is "Open Source"

What information to be open-sourced

- Basically everything
 - Technical Drawing (i.e. CAD files)
 - Source code (satellite and ground station)
 - PCB design
 - Assembly and testing procedure
 - Parts list
 - Test reports
 - Interface Control Documents
 - Textbook
- Currently, information about BIRDS-3 and 4 are available
- Coming soon (by summer 2022)
 - In-orbit results (temperatures, voltage, current, etc) of BIRDS-3 and 4
 - BIRDS-5 information

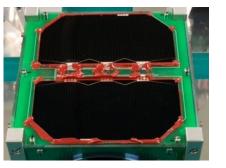
Licensing

- So-called "MIT license"
- Copyright (c) 2021 Kyushu Institute of Technology
- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Users

- Domestic
 - -2 universities
 - 2 high-school projects
 - 1 company
- International
 - -4 countries (former BIRDS students)
- The information is open to anybody including non-BIRDS countries

Estimated cost to produce a 1U CubeSat



Item	Cost (USD)	Note	
C&DH and EPS*	4,000	Procured from a company	
UHF COM*	8,000	Procured from a company	
Structure + fastener	8,000	Manufacturing outsourced	
Battery	2,000	Ni-MH ₂ (Eneloop by Panasonic)	
Solar panels + Glue	10,000	Glue (RTV S-691) costs 5K\$ per kg	
Backplane + Antenna panel	5,000	Manufacturing outsourced	
Other small items	3,000		
Total	40,000		

*Provided by Japanese companies

Costs are the case when purchased inside Japan No mission payload Keys to reduce the cost are to

- Develop UHF COM in-house
- Find non-space grade glue for solar panel Goal is to achieve less-than 30K\$

Solar panel w/ glue

UHF COM board

Estimated schedule to produce a 1U CubeSat

Timing	Milestones		
D	Delivery of the satellite to the launcher		
MonthD-1	Completion of FM hardware testing		
MonthD-3	Completion of FM hardware procurement. Everything deliver and waits for assembly.		
MonthD-6	Completion of EM testing		
MonthD-10	Completion of EM hardware procurement. Everything deliver and waits for assembly.		
MonthD-13	Feasibility of the conceived mission is confirmed Design of the EM is complete and order placement starts		
Month D-A*	Mission profile of the satellite is decided		

Aim to deliver a satellite in 15 ~ 18 months

Activities

- Monthly Webinar
 - 20:00-21:30 2nd Saturday every month (JST)
 - Next one is May 14
- GitHub platform
 - https://github.com/BIRDSOpenSource
 - Telegram Chat
- Mailing list to announce events such as Webinars
 - To subscribe, access to

Birds Open Source Release

The Joint Global Multi-Nations Birds Satellite project, or BIRDS project, was created by the Kyushu Institute of Technology (*KwuTech*) to help countries

BIRDS Project

created by the Kyushu Institute of Technology (*KyuTech*) to help countries build their first satellite. So far, there have been 4 completed and one ongoing BIRDS missions:

- 1. BIRDS-1: Bangladesh, Japan, Mongolia, Ghana and Nigeria.
- 2. BIRDS-2: Buthan, The Philipines and Malaysia.
- 3. BIRDS-3: Japan, Sri Lanka and Nepal
- BIRDS-4: Japan, The Philipines, Paraguay.
 BIRDS-5: Japan, Uganda and Zimbabwe.

The project has two main objectives:

- 1. Experience the entire cycle of a satellite project, from mission definition to operation, in a hands-on manner.
- Have a strategy for sustainability after the training ends.

It should be emphasized that the primary goal is not the building of a satellite, but to have a long-term and sustainable space program established in each member country.

BIRDS Project

Conclusion

- Flight proven BIRDS Bus information is opensourced
- Goal
 - Space programs in non-space faring countries have more solid basis in each country
 - Making satellite development easier, quicker and cheaper so that
 - More new people enter the space sector
 - More people benefit from the uses of outer space