

Configurable Backplane

Marloun Sejera

Laboratory of Lean Satellite Enterprises and In-Orbit Experiments (La SEINE) Kyushu Institute of Technology (Kyutech), Japan

July 13, 2022

BIRDS Program

"successfully build, test, launch and operate satellite of non-space fairing countries"

*country's first satellite 2

BIRDS 1U Standard Bus

BIRDS 1U Backplane (1/2)

Backplane provides electrical and mechanical interface between components satellite components.

Features

- Easy to assemble and disassemble
- Less use of harness
- Enough connector size and pin count

12

	Name	No. of pins	Description	Manufacturer Model	Current rating [A]	Voltage rating [V]	Operating Temp [°C]
Backplane	C101-	50	FAB, OBC/EPS,	Hirose		200	-55 to +85
Top side	C101		COM, MSN1	A3C-50DA-	1		
			MSN2, RAB	2DSA (71)			
	SW1-	2	Dep. SW1 Dep. SW2	Molex	15	125	-40 to
 FAB: Front Access Board OBC: On-Board Computer EPS: Electric Power Subsystem MSN: Mission RAB: Rear Access Board 	SW4		Dep. SW3 Dep. SW4	554600272	1.5	123	+105
	SP1-SP4	12	+X solar panel +Y solar panel -Y solar panel Antenna panel	Hirosugi PSR-210154- 12	1	500	-40 to +105
BPB : Backplane Board	SP5	12	-Z Solar Panel	Hirosugi PSS-210204-	1	500	-40 to

-40 to +105

BIRDS 1U Backplane (1/2)

CPLD (Complex Programmable Logic Device)

- Flight-proven (BIRDS-3 heritage)
- Lattice Semiconductor 4256ZE
- Ultra-low power PLD (13uA standby current)
- 1.8V LVCMOS technology
- 20mm x 20mm QFP (quad-flat pack)
- JTAG for programming

Voltage Regulator

- Input: 3.3V; Output: 1.8V
- 4.2mA quiescent current

Backplane Bottom side

CPLD Implementation (1/2)

Digital lines between the bus (OBC/EPS) and the mission payload are routed through CPLD

- 11 pins as (DIO, UART)
- 4 pins (**SPI**)

Figure 4.4 Data transfer between platform and payload

	C102 (OBC/EPS)								
	Signal Name	P. Nun	in 1ber	Signal Name					
	Prog_GIO_1	1	2	Prog_GIO_2					
	Prog_GIO_3	3	4	Prog_GIO_4					
	Prog_GIO_5	5	6	Prog_GIO_6					
	OBC-COM_1	7	8	OBC-COM_2					
	FAB_to_RAB_GIO_3	9	10	FAB_to_RAB_GIO_4					
	FAB to RAB GIO 5	11	12	FAB to RAB GIO 6					
	GND-SYS	13	14	GND-SYS					
	SUP_5V0	15	16	SUP_5V0					
	FAB_to_OBC_GIO_1	17	18	FAB_to_OBC_GIO_2					
	FAB to OBC GIO 3	19	20	FAB to OBC GIO 4					
	CPLD8	21	22	CPLD9					
	SUP_UNREG_1	23	24	SUP_UNREG_1					
	SUP 3V3 2	25	26	SUP 3V3 2					
	CPLD10	27	28	CPLD11					
	RAW POWER	29	30	RAW POWER					
	CPLD12	31	32	CPLD13					
	CPLD14	33	34	CPLD15					
	SUP UNREG 2	35	36	SUP UNREG 2					
)	CPLD16	37	38	CPLD17					
	Kill_SW	39	40	DEP_SW_1					
	DEP_SW_2	41	42	CPLD18					
	OBC-COM_3	43	44	OBC-COM_4					
	OBC-COM_5	45	46	OBC-COM_6					
	OBC-COM_7	47	48	OBC-COM_8					
	SUP 3V3 1	49	50	SUP 3V3 1					

OBC/EPS pin assignment 6

CPLD Implementation (2/2)

CPLD configures the communication between the bus and the mission payload by software

- VHDL or Verilog code
- Lattice ispLEVER Classic IDE (Student license available)
 https://www.latticesemi.com/ispleverclassic
- Lattice Diamond Programmer to load JEDEC file to the CPLD (free)

https://www.latticesemi.com/Products/DesignSoftwareAndIP/Prog rammingAndConfigurationSw/Programmer

 CPLD programming cable is needed to program CPLD

https://www.latticesemi.com/en/Products/DevelopmentBoardsAnd

Kits/Program

Lattice HW-USBN-2B programming cable

Case study 1: BIRDS bus in 3U

- BIRDS bus was designed to be scalable in larger CubeSat platforms, with minimal modifications
- Requirements BIRDS 1U bus architecture is kept; maximize backplane space for missions

FAB

3U configurable backplane

- 320 x 90 x 1.6 mm
- 6-layer PCB
- 13 mission boards
- 4 CPLDs
- 1 voltage regulator

Case study 1: BIRDS bus in 3U

- Constraint digital lines available in OBC/EPS
- **Solution** CPLDs as MUX

Truth Table

	Inj	put		Output				
Select 3	Select 2	Select 1	Select 0	CPLD 1	CPLD 2	CPLD 3	CPLD 4	
0	0	0	1	MSN 1	-	-	-	
0	0	1	0	MSN 2	-	-	-	
0	0	1	1	MSN 3	-	-	-	
0	1	0	0	CPLD 2	MSN 4	-	-	
0	1	0	1	CPLD 2	MSN 5	-	-	
0	1	1	0	CPLD 2	MSN 6	-	-	
0	1	1	1	CPLD 2	MSN 7	MSN 7	-	
1	0	0	0	CPLD 2	MSN 8	MSN 8	-	
1	0	0	1	CPLD 2	CPLD 3	MSN 9	-	
1	0	1	0	CPLD 2	CPLD 3	CPLD4	MSN 10	
1	0	1	1	CPLD 2	CPLD 3	CPLD4	MSN 11	
1	1	0	0	CPLD 2	CPLD 3	CPLD4	MSN 12	
1	1	0	1	CPLD 2	CPLD 3	CPLD4	MSN 13	

port(
CP_IN: in s	td_logic_vector (27 dc	winto 0);
SEL IN: in	std logic vector (21	down to 0);
SEL OUT: OU	t std logic vector (3	downto 0));
	• • • • • • • • • • • • • • • • • • • •	
end entity cpld	1;	
architecture cp	ldl of cpldl is	
begin		
process (SEL IN	. CP IN) is	
begin	,,	
if(SEL IN(0)='1' and SEL IN(1)='0'	and SEL IN(2)='0' and SEL IN(3)='0') then
CP_OUT (6) <= CP_IN(0);	UART1(MAIN2MSN); pin21 -> pin68
CP_OUT (0) <= CP_IN(4);	UART1(MSN2MAIN); pin67 -> pin22
CP_OUT (7) <= CP_IN(1);	UART2(MAIN2MSN); pin5 -> pin53
CP_OUT (1) <= $CP_{IN}(5)$;	UART2(MAIN2MSN); pin52 -> pin4
CP_OUT	8) <= $CP_{IN}(2)$;	UART3(MAIN2MSN); pin25 -> pin42
CP_OUT	2) $\leq CP_{1N}(6);$	UART3 (MAIN2MSN); pin43 -> pin26
CP_OUT	$(1) = CP_{1N}(1);$	SPI_CS(MSNZSEM); pinto -> pinti SPI_MISO(SEM2MSN); pint2 -> pint01
CP_OUT	4) $\leq CP TN(8)$:	SPI MOSI (MSN2SFM) : pin12 -> pin101
CP OUT	5) $\leq CP IN(9)$;	SPI CLK(MSN2SFM); pin100 $->$ pin14

All 4 CPLDs where programmed based on truth table.

Functional test

Propagation delay (1 CPLD) is 9.86ns. Need more accurate measurements

Propagation delay measurement (1/2)

Setup 1: logic analyzer + oscilloscope

Setup 2: function generator + oscilloscope

Propagation delay measurement (2/2)

Setup 1: logic analyzer + oscilloscope

Setup 2: function generator + oscilloscope

- Input: 1MHz square wave, 3.3Vpp
- Measurements were also done using 25 MHz square wave input. No significant difference in propagation delay.
- Because of impedance mismatch, the signal from function generator appears twice the magnitude in the oscilloscope (Setup2).
- From the datasheet, LC4256ZE-5TNI has max propagation delay of 5.8ns
- Results show that propagation delay is cumulative delays of all CPLDs
 - Output voltage is not degraded as signal passes CPLDs

Propaga	tion delay
Setup 1	Setup 2
5.2 ns	6.0 ns
9.4 ns	10.2 ns
13.3 ns	14.0 ns
18.5 ns	16.8 ns
	Propaga Setup 1 5.2 ns 9.4 ns 13.3 ns 18.5 ns

Power measurement

Characteristic	Symbol	Min	Тур	Max	Unit
Quiescent Current	lo				mA
1.5 V (V _{in} = 11.5 V)		-	3.6	10	
1.8 V (V _{in} = 11.8 V)		-	4.2	10	
$1.9 V (V_{in} = 11.9 V)$		-	4.3	10	
2.0 V (V _{in} = 12 V)		-	4.5	10	
$2.5 V (V_{in} = 10 V)$		-	5.2	10	
2.85 V (Vin = 10 V)		-	5.5	10	
3.3 V (V _{in} = 15 V)		-	6.0	10	
5.0 V (V _{in} = 15 V)		-	6.0	10	
12 V $(V_{in} = 20 V)$		-	6.0	10	

IspMACH 4256ZE								
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.8 V, T _A = 25 °C	—	341	—	μA		
		Vcc = 1.9 V, T _A = 0 to 70 °C	_	361	_	μA		
		Vcc = 1.9 V, T _A = -40 to 85 °C	—	372	—	μA		
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.8 V, T _A = 25 °C	_	13	_	μΑ		
		Vcc = 1.9 V, T _A = 0 to 70 °C	—	32	65	μA		
		Vcc = 1.9 V, T _A = -40 to 85 °C	_	43	100	μA		

^{1.} Frequency = 1.0 MHz.

- Device configured with 16-bit counters.
- 3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6 V, V_{IN} = 0 V or V_{CCO} bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}

Includes V_{CCO} current without output loading.

This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15 µA typical current plus additional current from any logic it drives.

- 1 voltage regulator for all four CPLDs
- From datasheet, voltage regulator (NCV1117ST18T3G) quiescent current is 4.2mA. This is verified in a test.
- From datasheet, CPLD
 (4256ZE)
 - standby current is 13uA
 - operating current is 341uA
 - **Power consumption (idle):**
 - **14.4 mW** (4mA, 3.3V)
- Power consumption* (working): 17.7 mW (5.4mA, 3.3V)

*all four CPLDs are ON

Bit error check

- RPi sends 7 bytes of data (every 0.5 seconds) which passes through the CPLDs
- RPi receives the data from output pin of the last CPLD and compares it with the sent data
- Baud rate was varied from 1Mbps to 4Mbps.
- No bit errors recorded in the entire 5 minutes duration

Bit error check in thermal vacuum

- RPi sends 7 bytes of data (every 0.5 seconds) which passes through the CPLD
- RPi receives the data from the output pin of CPLD and compares it with the sent data
- Baud rate was fixed to 1Mbps.
- Temperature: -10degC to +70degC
- No bit errors recorded in the entire 10 hours duration

Alternative Design

- Additional MCU (Mission Boss PIC) that directly communicates with Mission PIC
- Implemented in BIRDS-5 1U satellites

Case Study 2: KITSUNE W6U CubeSat

- Divided into 3 sections
- Sections are inter-connected through backplane

Bus Modifications

Board	BIRDS 1U bus	KITSUNE Main bus
FAB	Manages generated power, battery, electrical power safety, and umbilical	 Introduced a separate board (ADB) for umbilical Power related functions are in EPS1 board
OBC/EPS	Command and data handling, and power distribution	- Additional power lines (12V, unregulated) and ground
Transceiver (TRX)	UHF	UHF + C-band
ADCS	None	With

Backplane (Top)

Backplane (Bottom)

 Two CPLDs (ispMACH4256E) were used for routing digital lines between boards

CPLD route configuration on Main Bus

- 21 digital lines were routed using CPLD: 8 UART, 8 SPI, 5 DIOs
- 45% of CPLD pins are utilized

Verification Results

- All 21 digital lines were verified to be working on both EM and FM boards
- Power consumption: 13 mW

Digital lines	Baud rate	EM	FM
UART x2 (Main MCU – ADB MCU)	9,600	0	0
UART x2 (Main MCU – ADCS MCU)	9,600	0	0
UART x2 (Main MCU – TRX2)	115,200	0	0
UART x2 (COM MCU – TRX2)	115,200	0	0
SPI x4 (ADCS MCU – Magnetometer)	1,000,000	0	0
SPI x4 (ADCS MCU – Shared FM)	1,000,000	0	0
DIO (Main MCU – ADB OCP)	-	0	0
DIO (ADCS MCU – Magnetometer reset)	-	0	0
DIO (ADCS MCU – Magnetometer DRDY)	-	0	0
DIO (Main MCU – ADCS OCP)	-	0	0
DIO (COM MCU to TRX2 CW)	-	0	0

On-orbit Results (1/3)

All 21 digital lines were verified to be working with successful uplink and downlink

Digital lines	Baud rate	EM	FM	On- Orbit
UART x2 (Main MCU - ADB MCU)	9,600	0	0	0
UART x2 (Main MCU - ADCS MCU)	9,600	0	0	0
UART x2 (Main MCU – TRX2)	115,200	0	0	0
UART x2 (COM MCU – TRX2)	115,200	0	0	0
SPI x4 (ADCS MCU – Magnetometer)	1,000,000	0	0	0
SPI x4 (ADCS MCU – Shared FM)	1,000,000	0	0	0
DIO (Main MCU - ADB OCP)	-	0	0	0
DIO (ADCS MCU - Magnetometer reset)	-	0	0	0
DIO (ADCS MCU -Magnetometer DRDY)	-	0	0	0
DIO (Main MCU - ADCS OCP)	-	0	0	0
DIO (COM MCU to TRX2 CW)	-	0	0	0

On-orbit Results: Power Consumption (2/3)

On-orbit Results: Temperature Profile (3/3)

